
Abstract. We investigate numerical linear dependencies
of Gaussian-type orbital basis sets employed in the
framework of the Hartree-Fock self-consistent ®eld
method for periodic structures, which so far have
hampered the use of extended basis sets for non-ionic
crystals. These linear dependencies occur when di�use
basis functions are included in a basis set in an
uncontrolled manner. We use the condition number of
the overlap matrix to lead us in the construction of
extended basis sets for periodic structures which avoid
numerical linear dependencies. Extended basis sets of
high quality are optimized for a number of periodic
structures (fcc He, a-Be, a-BN, and B1 NaF) with
respect to the energy of the constituent atoms or ions.
The results obtained with our basis sets, which do not
require reoptimization in the crystal environment, com-
pare favorably with those obtained with other extended
basis sets reported in the literature.

Key words: Periodic Hartree-Fock ± Gaussian
basis sets

1 Introduction

It is fairly well known how a basis set should be chosen
for atoms and molecules to ensure acceptable conver-
gence of a given property in an ab initio calculation with
minimal computational e�ort. Much empirical know-
ledge has been acquired on the choice of basis sets [1, 2]
in the decades since Boys suggested the use of Gaussian-
type orbitals (GTOs) in 1950 [3], and much e�ort has
been taken to understand basis set incompleteness e�ects
in atoms and molecules on a practical [4±6] and
theoretical [7±9] level. Thus the problem of choosing
GTO basis sets for quantum chemical investigations of
atoms and molecules is fairly well understood.

In this paper we are concerned with a di�erent situ-
ation: the basis sets used for the computation of periodic
structures in the framework of linear combination of
atomic orbitals to crystal orbitals (LCAO-CO) Hartree-
Fock (HF) theory. Minimal and small split-valence basis
sets optimized for use in atomic and molecular calcula-
tions are frequently employed often after reoptimization
for the solid-state system under investigation. Even
moderately extended basis sets, however, tend to nu-
merical linear dependencies when used in ab initio
studies of periodic systems. Consequently in the case of
crystal computations, basis sets of uniform quality for a
whole class of atoms or hierarchies of basis sets of in-
creasing quality for one atom are scarce and a consid-
erable fraction of the calculations on periodic systems
are undertaken with fairly limited basis sets [10±12]. So
one is still [13] faced with a situation where even the
somewhat more extended basis sets that were used in
solid state HF-self consistent ®eld (SCF) calculations,
for example, in Refs. [14±17], are modest compared to
those employed for molecular calculations, although the
use of large basis sets is computationally feasible [18].

In Sect. 2 a strategy based on theoretical consider-
ations is derived for the optimization of GTO basis sets
for periodical systems. This strategy (or modi®cation
thereof) is then employed to obtain basis sets for (fcc)
He, (hcp) a-Be, a-BN, and B1 NaF, which were treated
using the CRYSTAL 92 suite of programs. The results of
the calculations based on these basis sets are reported in
Sect. 3. Finally our results are summarized and conclu-
sions are drawn.

2 Theoretical considerations

In the periodic (LCAO-CO)-HF approach, Bloch func-
tions Ul r; k� � are used which are the result of adapting
spatially localized functions vl rÿ Rl

ÿ �
, centered at

Rl � Xl; Yl; Zl
ÿ �

, to the translational symmetry of a
crystal, which is modeled to be ideally periodic

Ul r; k� � �
X
g

eik�gvl rÿ Rl ÿ g
ÿ �

: �1�

The sum runs over all direct lattice vectors g.

*Dedicated to Prof. Dr. Wilfried Meyer on the occasion of his 60th

birthday

Correspondence to: B. Heû

Regular article

Choosing GTO basis sets for periodic HF calculations*

Armin GruÈ neich, Bernd A. Heû

Institut fuÈ r Physikalische und Theoretische Chemie, UniversitaÈ t Bonn, Wegelerstrasse 12, D-53115 Bonn, Germany

Received: 20 July 1998 =Accepted: 21 August 1998 / Published online: 19 October 1998

Theor Chem Acc (1998) 100:253±263
DOI 10.1007/s002149800m73



For the sake of argument, we consider orthorhombic
systems and choose the generating functions as tensorial
products of functions of the cartesian components (e.g.,
as cartesian Gaussian functions). Then the Bloch func-
tions themselves can be factored

Ul r; k� � �
X

gxgy gz

eikxgxeiky gyeikzgzvl xÿ Xl ÿ gx
ÿ �

� vl y ÿ Yl ÿ gy
ÿ �

vl zÿ Zl ÿ gz
ÿ � �2�

� /l x; kx� �/l y; ky
ÿ �

/l z; kz� �: �3�
Introducing the lattice parameters Ti; i 2 fx; y; zg and
writing out the function of the x coordinate in Eq. (3) as
an example, the components of the Bloch functions can
be rewritten as

/l x; kx� � �
X
l2Z

eikxlTxvl xÿ Xl ÿ lTx
ÿ �

: �4�

For components of the k vector that are rational
multiples of 2p=Tx, that is for kx � 2p m

nTx
, it is possible

to de®ne a super cell, for which the phase factors
c kx; l� � � exp 2pi m

n l
ÿ �

form a periodic sequence in l with
period n. Thus the 1D components of the Bloch function
can be interpreted as complex linear combinations of the
functions ~vl x� �

/l x; kx� � �
Xnÿ1
l�0

c kx; l� �~vl xÿ X l
l

� �
�5�

~vl x� � �
X
j2Z

vl xÿ jT� �; �6�

where X l
l � Xl � lTx, and T � nTx is the lattice param-

eter of the super cell, which is dependent on the
particular k vector under consideration. The ~vl x� � are
by construction periodic functions in x with period T
and we refer to them as periodized GTOs (PGTOs).

2.1 Periodized GTO

The PGTOs ~vl de®ned according to Eq. (6) are
superpositions of GTOs centered at the nodes of an
in®nite, regular grid with period T . Considering the
simplest cases, we restrict the generating functions vl to
normalized 1D s- and p-type GTOs, which are centered
at coordinate r in the reference cell (see Fig. 1)

vs �
2a
p

� �1=4

eÿa�xÿr�2 �7�

vp � 2
2a3

p

� �1=4

�xÿ r�eÿa�xÿr�2 : �8�

Since the GTOs in neighboring cells have nonzero
overlap, the PGTOs are in general not normalized, as
can be seen from the squared norm of their Fourier
expansion in the unit cell:

h~vsj~vsi �
��������
2p

T 2a

r X1
n�ÿ1

exp ÿ 2p2n2

T 2a

� �
�9�

h~vpj~vpi �
4

T 3

�������
2p5

a3

r X1
n�ÿ1

n2 exp ÿ 2p2n2

T 2a

� �
: �10�

It is quite instructive to derive the limits of the sums
[Eqs. (9) and (10)] for large and small exponents a,

lim
a!0
h~vsj~vsi � 1 lim

a!1h~vsj~vsi � 1 �11�
lim
a!0
h~vpj~vpi � 0 lim

a!1h~vpj~vpi � 1: �12�

This result is not surprising, since for large a the
generating GTOs are isolated within the unit cell and
their original normalization is retained in the PGTOs.
For small exponents, the generating functions reach
beyond the reference cell and hence are able to interfere
(constructively for s-type GTOs and destructively for
p-type GTOs) with their neighbors.

It is also quite instructive to consider the ®rst Fourier
coe�cients of the normalized PGTO and their limits
for small exponents. Denoting the kth mode by jeki �
exp ÿ2pi kx

T

ÿ �
, we have

lim
a!0
jhe0j~v0sij2 � 1ÿ 2 exp ÿ 2p2

aT 2

� �
�O exp ÿ 4p2

aT 2

� �� �
�13�

lim
a!0
jhe1j~v0pij2 � 1ÿ 4 exp ÿ 6p2

aT 2

� �
�O exp ÿ 12p2

aT 2

� �� �
:

�14�
That is to say, periodized functions constructed from
di�use s- and p-type GTOs converge exponentially to the
0 and 1 mode of the Fourier expansion for small a.
Consequently, two di�use PGTOs located at the same
center r have very similar overlap with their limit modes
and thus easily become linearly dependent for small
exponents.

In the course of a HF-SCF calculation one needs to
orthonormalize the atomic orbital basis. In order to do
this for a given set of PGTOs, one has to determine its
overlap matrix S, which can then be used to obtain the
orthogonal PGTOs ~v0l, for example, via symmetric
orthogonalization, by solving the matrix equation

j~v0li � S1=2j~vli: �15�

Fig. 1. Periodized p-type GTO for di�erent exponents over the
range of two lattice constants T
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If this is done numerically, a small numerical error in the
vector representation of ~vl will result in an error in ~v0l,
which is proportional to the condition number of the
transformation matrix cond�S1=2�. We take cond�S1=2�
as the ratio of the largest and smallest eigenvalue of S1=2.
It determines the numerical stability of the orthogonal-
ization Eq. (15) (and hence of any SCF procedure that
relies on such orthogonalization).

There are two factors that govern the condition
number of the transformation matrix: the di�useness
and the number of the di�use functions vl included in
the basis set. In the case of just one di�use PGTO, one
diagonal element of S will be large or small, depending
on the angular momentum type of the basis function.
This implies an unfavorable condition number of S and
hence of S1=2. This situation is aggravated, if additional
di�use generating functions of the same angular mo-
mentum type are included in the basis set. In this case
the absolute value of some o�-diagonal elements and of
some diagonal elements of S will be very similar. Upon
diagonalization this will lead to a large splitting of the
eigenvalues and hence to a bad condition number for S.
In practical calculations the number of di�use basis
functions is much more critical than their di�useness.

The fact that di�use basis functions lead to numerical
instabilities can be understood from a physical reason-
ing. Di�use GTOs are needed for atoms or molecules to
describe electronic motion far away from the atomic
center, like in a Rydberg state, for example. In a solid-
state system, however, electrons cannot be far away
from one nucleus without being close to another. Thus
di�use basis functions are needed in solid-state systems
only to the extent that they allow polarization of the
charge density between the nuclei. In order to include
this polarization ability while avoiding numerical linear
dependencies in solid-state calculations, it is vital to
derive a measure for the di�useness of a basis set.

The magnitude of the residual terms, i.e., the squared
amplitudes of the higher than 0th (1st) modes in Eqs. (14)
and (15) depend on the product aT 2. For a given expo-
nent, the residual term decreases with smaller T , which is
in turn dependent on the k value under consideration.
(Higher values of k imply that the period T of the super
cell is larger.) The smallest lattice constant TC is realized
for the high symmetry (C) point in k space; that is for
k � 0. This suggests measuring the exponent of a prim-
itive GTO in multiples of Tÿ2C and de®ning a general-
ization of the concept of even-tempered basis sets for
solid-state calculations, with exponents ai given by

ai � c

T 2
C

bi i � 0; 1; 2; . . . : �16�

In this equation c measures the di�useness of the basis set
and b is the ratio between two adjacent exponents. In a
real (3D) system it is convenient to identify TC with the
nearest-neighbor separation. One can show that two
basis sets chosen according to Eq. (16) for di�erent lattice
constants with given c and b will lead to the same overlap
matrix. It should be noted that scaling of GTO exponents
with Tÿ2 has previously been used to assure uniform
convergence of the overlap matrix for di�erent lattice
constants in an HF-SCF calculation of diamond [19].

2.2 Strategies for the optimization of basis sets

Carefully choosing the parameters c and b in Eq. (16) for
an even-tempered basis guarantees a well-conditioned
overlap matrix and hence numerical linear indepen-
dence. In practice, subsequently optimizing and con-
tracting such an even-tempered basis set does not alter
the situation signi®cantly, since the exponents do not
change much in the course of optimization if they were
reasonably chosen in the ®rst place. In order to derive a
suitable basis set for elementary solids, one should thus
®rst obtain an even-tempered basis set according to
Eq. (16) and subsequently optimize it.

First b and the number of primitive GTOs of one
angular momentum type are determined, as desired
(b � 2:5ÿ 4:5 would be a good choice, c.f. Ref. [4]). Then
a guess is made at the initial value of the smallest expo-
nent amin and a geometrical series of exponents is ob-
tained ai � aminb

i. The optimal value of c � aminD2 can
then be derived by monitoring the maximum condition
number of the overlap matrix for this basis set at varying
nearest-neighbor distances D for the crystal structure at
hand (c.f. Sect. 3.2). Once b and c are chosen in this way,
a new set of exponents can be derived as an even-tem-
pered series according to Eq. (16), where TC is taken as
the smallest expected nearest-neighbor separation.

The basis set thus obtained should be subsequently
optimized for the isolated atom or ion, while the most
di�use exponent ± the pivot ± is held ®xed. For that
purpose it will be frequently necessary to augment the
even-tempered basis set by an auxiliary primitive GTO
that is more di�use than the pivot. This will prevent the
second most di�use exponent from becoming smaller
than the pivot in the course of the basis set optimization.
Afterwards, the auxiliary primitive can either be re-
moved from the basis or it can be contracted with one of
the more compact GTOs. The same procedure can be
applied to nonelementary solids, if for each element in-
volved TC is chosen as twice its covalent or ionic radius.

3 Results and Discussion

In order to check the optimization strategies derived in
the previous section, basis sets were optimized for use in
four test cases: a hypothetical fcc He crystal, a-Be, a-BN,
and the B1 phase of NaF. The ®rst system was chosen to
demonstrate our ideas, while the remaining three systems
re¯ect standard situations which occur in solid-state
calculations: a metallic, a covalent, and an ionic system.
Since the structure of a-BN is determined by a subtle
balance of electrostatic attraction and Pauli repulsion, it
serves as an example for covalent as well as for molecular
solids which feature dispersion interactions.

3.1 Computational Details

All our basis sets were energy optimized for the isolated
atoms or ions, using the TURBOMOLE 2.30 suite of
programs with standard, i.e., default computational
parameters as supplied. The subsequent solid-state cal-
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culations were done with the CRYSTAL 92 suite of
programs, with rather strict computational parameters:
The threshold (ITOL) parameters which control the
accuracy of the computation of the mono- and bielec-
tronic Coulomb and exchange series were kept at the
``very good'' (cf. Ref. [20]) setting. In the case of B1-NaF
they were even tightened to 8 10 8 10 17, in order to obtain
a smooth potential curve. The Fock matrix was diago-
nalized at a sample of 93, 133, and 145 k points in the
irreducible wedge of the Brillouin zone in the calculation
of a-Be, a-BN, and B1-NaF, respectively. Usually a Fock
matrix mixing of 30% was used to facilitate convergence
of the SCF part of the calculations. For some calculations
it was necessary to compile the CRYSTAL 92 programs
with dimensional parameters exceeding the ones suggest-
ed for ``large systems'' in Ref. [20].

3.2 fcc Helium

In view of the the lack of dispersion interaction, we
expect a purely repulsive potential curve for fcc He in the
HF-SCF model. Thus spurious binding e�ects due to
the basis set superposition error (BSSE) can be clearly
identi®ed.

A primitive 10s basis for He was fully optimized,
starting from a geometrical series of exponents with
amin � 0:01, and a ratio of successive exponents b � 3.
The optimized basis set was then contracted according
to the scheme f511111g and augmented with two p-type
polarization functions. The ®nal basis set, as employed
in our calculations, is listed in Table 1.

From this �10s2p�= 6s2p� � basis three smaller basis sets
were derived by successive truncation of one, two, and
three of the most di�use primitive functions. We term
these truncated basis sets �9s2p�= 5s2p� �, �8s2p�= 4s2p� �,
and �7s2p�= 3s2p� �. In Sect. 3.1 it was discussed that
the condition number of the overlap matrix of an
even-tempered basis set depends primarily on the ratio
c � amin=D2, with D the nearest-neighbor separation and
amin the smallest exponent.

In Fig. 2 the maximum condition number of the
overlap matrices S(k) for a sample of 29 k points is
plotted over c. From Fig. 2 it can be seen that the poles
in the maximum condition number of the overlap ma-
trices occur for all four basis sets for c � 3. Choosing

amin such that c � 6 thus guarantees that numerical lin-
ear dependencies will be avoided. Note that the
�10s2p�= 6s2p� � basis and its truncated derivatives are not
even-tempered sets, since each exponent was individually
optimized and the inner shell was contracted. Also note
that the truncated basis sets are quite di�erent in size,
which leads to di�erent condition numbers for the
isolated atoms.

For the sake of completeness, we also report the
energy of a fcc He crystal at varying nearest-neighbor
distances computed with our four basis sets. The po-
tential curves along with the HF limit for the isolated He
atoms are displayed in Fig. 3. Note that the more
extensive (and more di�use) basis sets allowed compu-
tations only for larger D, due to numerical linear de-
pendencies which typically occurred when the smallest
eigenvalue of S(k) dropped below 10ÿ3 a.u.

All but the most truncated basis set yielded energies
for the isolated He atoms which were just 7� 10ÿ5 Eh
higher than the HF limit. Only the smallest �7s2p�= 3s2p� �
basis set, with the most di�use primitive function being
rather compact, led to an energy which was 4 mEh above
the HF limit. This basis also led to a bound region in the
potential curve, with a dissociation energy of roughly

Table 1. Basis set for Hea

l ai aÿ20

ÿ �
ci

s 799.861 0.0007087979
113.852 0.0057978534
25.5122 0.029432073
7.27573 0.10662688
2.40109 0.27193618

s 0.859007 1.0
s 0.324421 1.0
s 0.126636 1.0
s 0.0334228 1.0
s 0.0111537 1.0
p 1.73 1.0
p 0.58 1.0

a Etot�1S He� � ÿ2:861602Eh

Fig. 2.Maximum condition number of the overlap matrix S(k) for a
sample of 29 k points over the ratio of the smallest exponent of the
basis set to the square of the nearest-neighbor distance

Fig. 3. Total SCF energy Eh� � of a fcc He crystal for di�erent
nearest-neighbor distances D [a0]

256



0.5 mEh. At the HF-SCF level of theory this is clearly
due to the BSSE. For smaller nearest-neighbor separa-
tions the energy di�erence between the smallest
�7s2p�= 3s2p� � and the next larger �8s2p�= 4s2p� � basis set
decreases from 4 mEh for a nearest-neighbor distance of
D � 12:7 a0 to about 0.5 mEh for D � 3:88 a0. This re-
sult is expected [13], since atoms in a crystal can, to some
extent, utilize the basis functions which are centered at
their neighbors. One might be drawn to the conclusion
that for a given basis set, the incompleteness error van-
ishes for more compact geometries of the crystal. This
assumes, however, that higher angular momentum
GTOs do not appreciably contribute to the energy of the
crystal. Considering the ionization potential of He and
its consequently small polarizability, this assumption
seems fairly safe; for solids built from more easily
polarized atoms like metals the situation might be very
di�erent though.

3.3 a-Beryllium

Hexagonal a Be was chosen as a test system, since with
its relatively compact elementary cell, numerical linear
dependency e�ects should be quite pronounced. With
just four electrons per atom, only a relatively small
number of basis functions should be required to reach
the limit of a complete basis. Clearly, electron correla-
tion is expected to be very di�erent in Be atoms
compared to the solid state, and HF-SCF theory cannot
be expected to yield properties close to experimental
results, but that is not our primary focus anyway.

An �11s�= 7s� � basis set was optimized for the Be atom,
starting from an even-tempered set of exponents with
c � 5 and b � 3. c was determined from a similar plot as
Fig. 2, while TC was taken as the experimental nearest-
neighbor separation D � 4:205 a0 [21]. This corresponds
to an absolute value of the pivot of amin � 0:2826 a20.
The initial basis set was then extended by two auxiliary
di�use s-type GTOs, and subsequently optimized. The
basis set obtained in this way was then contracted
according to the scheme f5111111g. The two auxiliary
primitives were then removed and polarization functions
were added. The three p-type polarization functions were
taken from the inner polarization contraction of SchaÈ -
fer's TZP basis [22], while the two d-type exponents were
set to 0:9 aÿ20 and 0:3 aÿ20 respectively. The ®nal basis
set as it was employed for the subsequent solid-state
calculations is listed as vtz1 in Table 2.

The vtz2 basis set was derived from the vtz1 basis set
by augmentation with two di�use GTOs: one of s-type
and one of p-type. The additional s-type exponent was
optimized while the rest of the basis was kept ®xed.
Valence contractions were optimized, according to the
scheme f51112=121=11g. For the s-type valence con-
traction this optimization was done for the atom, while
the p-type contraction was optimized for a Be2 ``mole-
cule'' at a bond length of 4:2049 a0. (This is the
experimental nearest-neighbor distance in a-Be). The
somewhat unconventional contraction pattern for the p-
type basis was chosen to allow for an additional varia-
tional degree of freedom in the optimization of the wave

function, which includes di�use basis functions. This
was deemed necessary since the population of the most
di�use p-type GTO as obtained from a Mulliken popu-
lation analysis for a-Be using the vtz1 basis set was
rather high (1.33) for the experimental geometry.

For both basis sets and for the extended basis set of
Dovesi [16, 23], the energy as a function of nearest-
neighbor distance was computed. To do so, the ratio of
the two lattice constants was kept at the experimental
value (A=C � 0:63787 [21]), while one axis A was varied.
The potential curves obtained in this way are displayed
in Fig. 4; the lattice constants A and C, total energies at
the equilibrium geometry Etot, and the virial ratio cvir are
listed in Table 3.

Both Dovesi's basis set and our vtz1 basis set describe
the isolated Be atom rather poorly. This is a conse-
quence of the smallest s-type exponent of both basis sets
being rather large (0.27 aÿ20 and 0.245 aÿ20 , respectively).
On the other hand, the vtz2 basis yields energies within
1 mEh of the Hartree-Fock limit for the isolated atoms,
due to a di�use s-type function being included as a
valence contraction.

Table 2. Basis sets for Be

l ai aÿ20

ÿ �
vtz1a vtz2b

ci ci

s 6265.83 0.000444562 0.000444562
1032.99 0.003076364 0.003076364
240.280 0.016272378 0.016272378
66.1461 0.069307201 0.069307201
20.7578 0.22785662 0.22785662

s 7.17720 1.0 1.0
s 2.66819 1.0 1.0
s 1.04708 1.0 1.0
s 0.245751 1.0 0.36723142

0.0716935 ± 0.75904191
p 3.63298 1.0 1.0
p 0.713414 1.0 1.6398617

0.102264 ± 0.58719124
p 0.196089 1.0 1.0
d 0.9 1.0 1.0
d 0.3 1.0 1.0

a Etot(
1S Be) � )14.362253Eh

b Etot(
1S Be) � )14.571955Eh

Fig. 4. Total SCF energy Eh� � of an a-Be crystal for varying nearest-
neighbor distances D a0� �
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For the solid-state system we estimate that the ener-
gies computed with the vtz2 basis set are similarly close
to the HF limit, since the inclusion of additional basis
functions did not alter our results signi®cantly. The ef-
fect of f -type GTOs (which are unavailable for the
CRYSTAL 92 suite of programs) was probed by including
s- and p-type GTOs located at the tetrahedral and oc-
tahedral interstices, which resulted in an energy lowering
of less than 0.3 mEh. Furthermore, including additional
p- and d-type GTOs centered at the nuclei did not lower
the calculated energies by more than 0.03 mEh.

The most important di�erence between Dovesi's ex-
tended basis set and our vtz1 basis set lies in the fact that
ours approaches the HF limit for the solid-state system,
while that of Dovesi does not. An incomplete basis set
should lead to compact geometries, due to the BSSE
which generally results in underestimation of bond
lengths [24], and to overestimation of the bulk modulus
[18]. The situation is similar to restricted HF calculations
on diatoms, which lead to overly small bond lengths and
too high harmonic frequencies due to overestimation of
the dissociation energy. Dovesi's basis set seems to both
underestimate the bond length and to overestimate the
curvature of the potential energy curve, while our basis

sets in turn leads to overestimation of the bond lengths,
presumably due to the neglect of electron correlation
e�ects in HF-SCF theory.

Another interesting feature of Fig. 4 is the barrier in
the vtz2 potential curve at D � 6:41 a0, which is 9.2 mEh
higher than the energy for the isolated atoms. A similar
maximum was observed in the SCF and CAS-SCF but
not in the CI potentials of Be3 in Ref. [25]. It can be
attributed to SCF theory being unable to describe the
dispersion (i.e., long-range attractive) terms of the total
energy. This feature of SCF theory can only be repro-
duced if the basis contains su�ciently di�use functions.
The vtz1 basis set yields similar results (labeled ``aug-
mented vtz1'') if it is augmented with two di�use s-type
GTOs (a � 0:102264; 0:041980 aÿ20 ). For this augmented
basis set, only a few points of the potential could be
computed, since it produces near linear dependencies for
D < 7:8 a0.

Our vtz1 and vtz2 basis sets not only yield essentially
the same geometrical parameters but also a very similar
electronic structure, which is in turn quite di�erent from
the one obtained with Dovesi's basis set. To illustrate
this point, the di�erential density for the noninteracting
atoms and the crystal was computed over the �1120�
plane within one unit cell. Our approach was the same as
in Ref. [23]. Figures 5 and 6 show the di�erential density
obtained with the vtz2 and Dovesi's basis sets for the
experimental equilibrium geometry (density in the crys-
tal minus density of the noninteracting atoms). Positive
values refer to an increase of the electronic density in the
crystal. The vtz1 basis set yielded a di�erential density
plot very similar to Fig. 5.

In general terms, there is an electron transfer from the
core to the valence region of the atoms. This transfer is
rather inhomogeneous, however, since there is an in-

Fig. 5. Di�erential electronic
density 10ÿ3eaÿ30

ÿ �
of the non-

interacting atoms and the crys-
tal over the (1120) plane of the
unit cell for the vtz2 basis. The
dotted circles indicate the oper-
ator widths of Table 4

Table 3. Lattice constants for a-Be obtained with di�erent basis
sets

Basis set

Dovesi vtz1 vtz2 Exp.

A (pm) 222.2 230.3 230.9 228.56
C (pm) 348.3 361.1 361.9 358.32
Etot (Eh) )29.2568 )29.3045 )29.3066 ±
cvir 1.0050 1.0003 1.0002 ±
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crease of electronic density in the tetrahedral and a de-
crease in the octahedral interstices. The ®rst feature is
much less pronounced for Dovesi's basis, (due to the
lack of d-type GTOs), while the octahedral sites (at the
corners of the plotted area and in the middle of its sides)
are much more deprived of electronic density. This is due
to Dovesi's basis set being more compact and hence less
able to correctly describe the regions which are far away
from (i.e., between) the nuclei.

The contraction pattern proposed above for the vtz2
basis set addresses precisely the features of the density
within the unit cell which are present at the equilibrium
geometry. Since additional functions in the contractions
have small exponents, they mostly a�ect the tails of the
orbitals and provide an enhanced operator width,

D�r̂� �
���������������������
hr̂2i ÿ hr̂i2

q
, for the outermost basis functions,

as can be seen from Table 4. Conversely the lack of these
(or similarly di�use) functions will result in an inap-
propriate representation of the density at the interstices,
as discussed above.

3.4 a-Boron nitride

In order to learn more about basis set e�ects in covalent
solids we studied a-BN. Because of structural similarities
a-BN is often referred to as inorganic graphite. Like

graphite it has a sheet structure, with strong covalent
bonding within the sheets and weak van-der-Waals-like
bonding between them. Unlike graphite, the layers in a-
BN are arranged in such a way that N positions in one
sheet are matched with B positions in the neighboring
sheets. Since one expects to ®nd partial charges of
opposite signs at the B and N centers, there should be
some degree of electrostatic attraction between the
sheets, which can be reproduced in the framework of
HF-SCF theory. Even if dispersion forces between the
layers are not present in the HF-SCF model, one might
hope to recover at least a part of the bonding energy
between them.

Two basis sets were optimized for a-BN. The ®rst
one, which we term ``m-svp'', is a modi®cation of
Dunning and Hay's split valence basis set [26]1. It di�ers
from the original basis set only in the exponents of the
outermost primitive GTOs, which were ®rst adjusted
to circumvent numerical linear dependencies and then
reoptimized with respect to the energy of a 2D layer of
BN. The optimization led to a numerically linear
dependent basis set in the third optimization cycle.
Therefore, the results of the second cycle were used and
are listed in Tables 5 and 6.

Fig. 6. Di�erential electronic
density 10ÿ3eaÿ30

ÿ �
of the non-

interacting atoms and the crys-
tal over the (1120) plane of the
unit cell for Dovesi's basis set.
The dotted circles indicate the
operator widths of Table 4

Table 4. Operator widths Dr̂ for the outermost basis functions for
the vtz2 and Dovesi's basis sets

Dr̂ a0� �
Type s p d
vtz2 2.73 2.52 2.42
Dovesi 1.67 2.15 ±

1 The original basis set was obtained from the Extensible Compu-
tational Chemistry Environment Basis Set Database, version 1.0, as
developed and distributed by the Molecular Science Computing
Facility, Environmental and Molecular Sciences Laboratory which
is part of the Paci®c Northwest Laboratory, P.O. Box 999,
Richland, Washington 99352, USA, and funded by the U.S.
Department of Energy. The Paci®c Northwest Laboratory is a
multiprogram laboratory operated by Battelle Memorial Institute
for the U.S. Department of Energy under contract DE-AC06-
76RLO 1830. Contact David Feller, Karen Schuchardt, or Don
Jones for further information.
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The second basis set, which we term ``tzp'', was
energy-optimized for the 2P and 4S states of B and
N, respectively. The procedure adopted was the one
described in Sect. 2.2. The pivots were chosen as
c � 2=D2 � 2=�2rcov�2, where rcov is the covalent radius
of B (1:53 a0) or N (1:32 a0). In this case c � 2 was
chosen since hexagonal BN is not as densely packed as
a-Be. The value of c was determined from a similar plot
as Fig. 2 for the structure of a-BN.

Both basis sets as well as one suggested by CausaÁ [12]
which we term CZ 6-21G*, were subsequently used to
compute the equilibrium geometry of hexagonal BN.
CausaÁ 's basis was derived from the well known 6-21G*
series of basis sets [27] and reoptimized for use in a study
on cubic BN. The lattice constants A and C, the total
energies at the equilibrium geometry Etot, and the virial
ratio cvir obtained with the three basis sets are listed in
Table 7.

At ®rst glance it seems the CZ 6-21G* basis set yields
the best results for the geometry of the unit cell, despite
the energy being far from optimal. This is, however,
a spurious outcome, since the sheets of a-BN are not
bound at all at the HF-SCF level of theory. This can be
seen in Fig. 7, where the binding energies of the sheets
per unit cell as a function of their separation are plotted.
The potential curves labeled BSSE are the raw binding
energies, de®ned as the di�erence between the energy of
the unit cell at a given separation of the layers and of the
isolated layers. The curves labeled CP have been cor-
rected for the BSSE by the counterpoise method [29].
For this purpose, the energy of the isolated sheet was
calculated with the basis functions of the two neigh-
boring layers included. Clearly all basis sets result in
purely repulsive potentials, which are in fact rather

similar if the CP correction is applied. However, only
our tzp basis set is able to describe the correct behavior
of the potential curve even without correction, empha-
sizing that it is indeed close to the HF limit.

Table 5. Basis sets for N

l N tzpa N m-svpb

ai aÿ20

ÿ �
ci ai aÿ20

ÿ �
ci

s 20527.6 0.003369005 5909 0.001190
3077.30 0.026127932 887.5 0.009099
699.427 0.13590992 204.7 0.044145
197.779 0.54849282 59.84 0.150464
64.4370 1.7413538 20.0 0.356741

7.193 0.446533
2.686 0.145603

s 23.1500 1.0 ± ±
s 8.93684 1.0 ± ±
s 3.58646 1.0 ± ±
s 0.835485 1.0 7.193 )0.160405

0.7 1.058215
s 0.285738 1.4133855 0.33 1.0

0.0995290 0.23250588 ± ±
p 74.3172 0.016550978 26.79 0.018254

17.5273 0.11830121 5.956 0.116461
5.45842 0.49223581 1.707 0.390178
1.95578 1.3569285 0.5314 0.637102

p 0.74328 1.0 ± ±
p 0.28574 1.3214430 0.2557 1.0

0.10878 0.47610735 ± ±
d 0.8 1.0 1.226859 1.0

aEtot(
4S N) � )54.346552Eh

bEtot(
4S N) � )54.399978Eh

Table 6. Basis sets for B

l B tzpa B m-svpb

ai aÿ20

ÿ �
ci ai aÿ20

ÿ �
ci

s 13709.3 0.000568503 2788 0.001288
2254.10 0.003876959 419 0.009835
543.585 0.019275870 96.47 0.047648
156.293 0.079560091 28.07 0.160069
50.0927 0.27817595 9.376 0.362894

3.406 0.433582
1.306 0.140082

s 17.0606 1.0 ± ±
s 6.03047 1.0 ± ±
s 2.19062 1.0 ± ±
s 0.499099 1.0 3.406 )0.17933

0.3245 1.062594
s 0.217452 1.1837253 0.16225 1.0

0.081605 0.75120640 ± ±
p 73.4744 0.002244552 11.34 0.017988

14.8716 0.021941253 2.436 0.110343
4.25947 0.10364896 0.6836 0.383072
1.46496 0.34157697 0.2134 0.647895

p 0.55969 1.0 ± ±
p 0.218745 1.1529679 0.1267 1.0

0.0762123 0.87382603 ± ±
d 0.8 1.0 0.9 1.0

aEtot(
2P B) � )24.528568Eh

bEtot(
2P B) � )24.507133Eh

Table 7. Lattice constants, total energies, and virial ratios for
hexagonal BN obtained with di�erent basis sets

Basis set

CZ 6-21G* m-svp tzp Exp. [28]

A (pm) 250.3 248.8 249.4 250.4
C (pm) 664.3 681.2 891.0 666
Etot (Eh) )158.4356 )158.5592 )158.5895 ±
cvir 1.00016 1.00110 0.99996 ±

Fig. 7. Interaction energy [mEh] of two BN layers at varying
distances D �a0] for di�erent basis sets with and without counter-
poise (CP) correction for the basis set superposition error (BSSE)
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As in our study of a-Be, we simulated higher than d-
type basis functions by including ¯oating s- and p-type
GTOs located midway between two atomic centers be-
tween the sheets. Doing so did not change any of the
parameters computed with our tzp basis set signi®cantly.

It is rather surprising indeed, that the sheets of a-BN
are not bound at the HF level of theory. There is a
sizable charge separation between the N and B centers,
which according to Mulliken population analysis are
roughly �1 and ÿ1 respectively. Consequently one
would expect a-BN to be at least somewhat bound by
strong charge-charge electrostatic interactions of the
neighboring centers. Obviously, Pauli repulsion out-
weighs this e�ect. This raises the question of whether the
structures of other molecular solids can be correctly
described at all with HF-SCF theory. After all, the in-
teraction of higher than 0th-order multipoles decays
much more rapidly than charge-charge interactions. For
these reasons, the results of SCF theory for molecular
crystals with structures that are not dominated by hy-
drogen bonding should be considered with great care. It
should be noted that as in the case of a-Be, we found
very little dependency of the occupied band structure on
the choice of basis.

3.5 B1 Sodium ¯uoride

As a ®nal example the B1 phase of sodium ¯uoride
(NaF) was investigated. HF-SCF theory should be most
successful for this test system. For ionic solids one
expects the contribution of the correlation energy to be
similar in the isolated ions and in the solid state, which
results in a cancellation of errors. Two basis sets were
energy-optimized with respect to the ground states of the
constituent atoms (atom-tzp) and ions (ion-tzp) of NaF.
The ``ion-tzp'' basis set was derived from complete
optimization of uncontracted 11s7p (Na) and 12s7p (F)
bases, which were subsequently contracted according to
the scheme f611111/4111g (Na) and f6111111/4111g
(F). Both the exponents and the contraction coe�cients
were optimized with respect to the energy of the ground-
state ions. For the solid-state calculations a d-type
polarization function was added to both basis sets. The
®nal basis sets are listed in Tables 8 and 9.

The Fÿ and the Na� ions are quite compact, so it was
found that no constraints with regard to the magnitude
of the smallest exponents were necessary in the course
of the optimization of the ``ion-tzp'' basis sets. Note
that for this reason the most di�use p-type exponent in
the ``ion-tzp'' F basis turned out to be fairly small
(a � 0:103487 aÿ20 ). This should be compared to the
exponent that Dunning suggested to augment his basis
set for Fÿ (a � 0:074 a20) [26].

The ``atom-tzp'' basis sets were both optimized for
the ground states of the respective atoms. A constraint in
the optimization was only needed in the case of the
s-type exponents of Na. A pivot was chosen as
5=�2rion�2 � 0:3365 aÿ20 , where rion is the ionic radius of
the hexa-coordinated Na� ion (1.93 a0). All other ex-
ponents were freely optimized and the resulting basis sets
were then contracted according to the scheme f6111111/

41111g (Na) and f6111111/31111g (F). The auxiliary
s-type primitive (listed in parentheses in Table 8) of the
``atom-tzp'' set for Na was removed for the solid-state
calculations and a d-type polarization function was
added for F and Na. The basis sets employed for the
solid-state calculations are listed in Tables 8 and 9.

The geometrical structure parameters were obtained
via a ®t of the energy of the conventional unit cell to
Murnaghan's equation of state [30]:

Table 8. Basis set for Na

l Na atom-tzpa Na ion-tzpb

ai aÿ20

ÿ �
ci ai aÿ20

ÿ �
ci

s 55476.6 0.000228374 47714.3 0.000268966
8323.59 0.001766230 7769.56 0.001872322
1897.11 0.009174810 1853.76 0.009294649
537.085 0.037226367 540.917 0.036509024
175.216 0.12010269 180.219 0.11597796
63.1956 0.28910362 65.8824 0.27962557

s 24.4497 1.0 25.7375 1.0
s 9.77856 1.0 10.3771 1.0
s 2.60535 1.0 3.15371 1.0
s 0.949210 1.0 1.26011 1.0
s 0.336500 1.0 0.481033 1.0
s (0.0413741) 1.0 ± ±
p 538.245 0.000584429 268.973 0.001969871

125.771 0.005047702 61.9061 0.016075204
39.4588 0.026364155 19.3261 0.072913852
14.2635 0.095741915 7.03621 0.20991428

p 5.60704 1.0 2.71150 1.0
p 2.25558 1.0 1.03283 1.0
p 0.889722 1.0 0.378912 1.0
p 0.334060 1.0 ± ±
d 0.8 1.0 0.8 1.0

aEtot(
2S Na) � )161.85447Eh

bEtot(
1S Na) � )161.673463Eh

Table 9. Basis sets for F

l F atom-tzpa F ion-tzpb

ai aÿ20

ÿ �
ci ai aÿ20

ÿ �
ci

s 65820.5 0.000151635 50421.6 0.000164812
9907.62 0.001165934 7570.67 0.001289558
2293.32 0.005883067 1704.96 0.006787004
666.421 0.023572159 487.497 0.026866987
221.040 0.079369264 165.147 0.083268106
80.7903 0.21634446 63.5504 0.19818286

s 31.7082 1.0 26.9460 1.0
s 13.1269 1.0 12.1421 1.0
s 5.59238 1.0 5.49163 1.0
s 1.83029 1.0 1.70512 1.0
s 0.708778 1.0 0.635926 1.0
s 0.263666 1.0 0.215260 1.0
p 131.635 0.0036987415 112.063 0.003371059

30.9968 0.027339404 26.7542 0.023839042
9.76008 0.11478567 8.39446 0.098287601

± ± 2.96677 0.25329800
p 3.53864 1.0 1.06294 1.0
p 1.343852 1.0 0.356540 1.0
p 0.500963 1.0 0.103487 1.0
p 0.177427 1.0 ± ±
d 1.0 1.0 1.0 1.0

aEtot(
2PF) � )99.408301Eh

bEtot(
1SF)) � )99.457559Eh

261



E V� � � E V0� � � VB
B0 B0 ÿ 1� �

� B0 1ÿ V0

V

� �� �
� V0

V

� �B0

ÿ1
( )

: �17�

For this purpose the lattice constant A was varied in the
range 400±550 pm and the energy of the conventional
cell was computed. Then the parameters in Eq. (17) were
nonlinearly ®tted to reproduce the computed energies.
The parameters obtained in this way for the di�erent
basis sets are listed in Table 10.

As expected, the experimental values are reproduced
rather well at this level of theory. Both the bulk modulus
B and its ®rst pressure derivative B0 are computed within
the limits of the corresponding experiments, and the
equilibrium lattice constant deviates only slightly from
it. The parameters computed with our ``ion-tzp'' basis
set stand out somewhat from those computed with the
other sets. This is a result of our ``ion-tzp'' basis set
being somewhat more di�use than the other basis sets
which led to numerical linear dependencies for lattice
constants smaller than 440 pm. For that reason fewer
data points were available and hence the quality of the
®tting procedure di�ered from that of the other basis
sets. This can be seen from Fig. 8, where the individual
points of the potential curves obtained with the three
basis sets display very similar behavior, while the ®tted
energies di�er considerably, particularly for small cell
volumes. The structure parameters obtained with the
basis set of Erikson et al. [18] di�ered somewhat from
those derived in the original work of that group. We also
attribute this to the di�erent number of data points used
in the iterative ®tting procedure.

Despite our basis set yielding lower energies than that
of Erikson et al. [18] we cannot add much to improve
their analysis, to which we refer the interested reader
instead. There is one point which needs to be stressed
however. Erikson et al. optimized their basis sets for
isolated ions and reoptimized the most di�use exponents
for the solid-state system. This procedure is only feasible
for the fewest systems, since most isolated anions are
unstable with respect to electron loss within the frame-
work of HF theory. Our ``atom-tzp'' basis set in turn
was optimized for the respective ground states of the
isolated atoms and was used without further modi®ca-
tion. The superior results obtained with this basis set

clearly demonstrate that costly reoptimization of a basis
set for the solid state is not at all necessary, provided it is
su�ciently extensive.

4 Conclusions

Several rules on how to optimize basis sets on isolated
atoms for use in periodic HF-SCF calculations were
derived. Utilizing these ®ndings, new powerful basis sets
were developed for the computation of a few represen-
tative solid-state systems. The subsequent calculations
proved our basis sets to be generally superior to sets that
are more limited but were reoptimized for the particular
crystal at hand. In the case of a-Be and to a lesser degree
in the case of a-BN we believe our results to be close to
the complete basis set limit.

Furthermore, it was demonstrated how it is possible
to include relatively di�use functions into basis sets for
periodic structures, thus improving the treatment of
metals and of molecular crystals. In the case of metals
such functions are necessary to correctly describe the
free electrons in the crystal, while for molecular crystals
di�use functions are needed to reproduce nonbinding
interactions. These nonbinding interactions were found
to be dominant in the case of a-BN, which is not bound
at the SCF level of theory. This poses the question of
whether molecular crystals, which are often also domi-
nated by nonbinding interactions, can be correctly
descrcibed at this level of theory.
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